1111. 有效括号的嵌套深度

1111. 有效括号的嵌套深度

有效括号字符串 定义:对于每个左括号,都能找到与之对应的右括号,反之亦然。详情参见题末「有效括号字符串」部分。

嵌套深度 depth 定义:即有效括号字符串嵌套的层数,depth(A) 表示有效括号字符串 A 的嵌套深度。详情参见题末「嵌套深度」部分。

有效括号字符串类型与对应的嵌套深度计算方法如下图所示:

给你一个「有效括号字符串」 seq,请你将其分成两个不相交的有效括号字符串,A 和 B,并使这两个字符串的深度最小。

不相交:每个 seq[i] 只能分给 A 和 B 二者中的一个,不能既属于 A 也属于 B 。
A 或 B 中的元素在原字符串中可以不连续。
A.length + B.length = seq.length
深度最小:max(depth(A), depth(B)) 的可能取值最小。 

划分方案用一个长度为 seq.length 的答案数组 answer 表示,编码规则如下:

answer[i] = 0,seq[i] 分给 A 。
answer[i] = 1,seq[i] 分给 B 。
如果存在多个满足要求的答案,只需返回其中任意 一个 即可。

示例 1:

输入:seq = "(()())"
输出:[0,1,1,1,1,0]

示例 2:

输入:seq = "()(())()"
输出:[0,0,0,1,1,0,1,1]
解释:本示例答案不唯一。
按此输出 A = "()()", B = "()()", max(depth(A), depth(B)) = 1,它们的深度最小。
像 [1,1,1,0,0,1,1,1],也是正确结果,其中 A = "()()()", B = "()", max(depth(A), depth(B)) = 1 。 

提示:

1 < seq.size <= 10000
 

有效括号字符串:

仅由 "(" 和 ")" 构成的字符串,对于每个左括号,都能找到与之对应的右括号,反之亦然。
下述几种情况同样属于有效括号字符串:

  1. 空字符串
  2. 连接,可以记作 AB(A 与 B 连接),其中 A 和 B 都是有效括号字符串
  3. 嵌套,可以记作 (A),其中 A 是有效括号字符串
嵌套深度:

类似地,我们可以定义任意有效括号字符串 s 的 嵌套深度 depth(S):

  1. s 为空时,depth("") = 0
  2. s 为 A 与 B 连接时,depth(A + B) = max(depth(A), depth(B)),其中 A 和 B 都是有效括号字符串
  3. s 为嵌套情况,depth("(" + A + ")") = 1 + depth(A),其中 A 是有效括号字符串

例如:"","()()",和 "()(()())" 都是有效括号字符串,嵌套深度分别为 0,1,2,而 ")(" 和 "(()" 都不是有效括号字符串。

代码如下:

class Solution {
    /**
     * @param String $seq
     * @return Integer[]
     */
    function maxDepthAfterSplit($seq) {
        $n = count(str_split($seq));
        $result = array_fill(0, $n, 0);
        $depth = 0;
        for ($i = 0; $i < $n; ++$i) {
            $char = substr($seq, $i, 1);
            if ($char == '(') {
                $result[$i] = $depth % 2;
                $depth++;
            } else {
                $depth--;
                $result[$i] = $depth % 2;
            }
        }
        return $result;
    }
}

本文链接:https://itarvin.com/detail-170.aspx

登录或者注册以便发表评论

登录

注册